
Superconductors: visualization and applications

N. Nancheva, P.Docheva
University of Rousse
Bulgaria

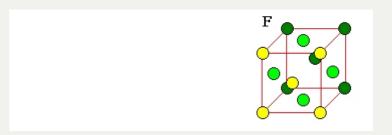
What is a Superconductor?

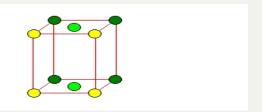
- A superconductor is a very pure metal, an alloy or a compound that allows electricity to be transmitted with minimal losses.
- A higher current flow may occur with lower energy losses than common conductors.
- Many elements can be coaxed into a superconductive state with the application of high pressure.

Superconductive elements

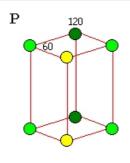
Type 1 Superconductors

- are very pure metals characterized as the "soft" superconductors
- were discovered first and require the coldest temperatures to become superconductive
- they exhibit a very sharp transition to a superconducting state and
- "perfect" <u>diamagnetism</u> the ability to repel a magnetic field completely
- have too low critical magnetic field Bc and are not attractive to industry
- have different crystal lattices FCC, BCC, HEX, TET, ORC, RHL
- BCS theory explains the behaviour of these superconductors by means of Cooper pairs


(Tc - critical temperature; Bc - critical magnetic field)


Material	Tc [K]	Bc [T]
Ti (metal)	0.40	0.0056
Zn	0.85	0.0054
Al	1.18	0.0105
In	3.41	0.0281
Sn	3.72	0.0281
Hg	4.15	0.0413
Pb	7.19	0.0803

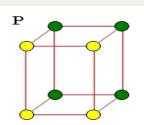
(FCC – face centered cubic; BCC – base centered cubic)

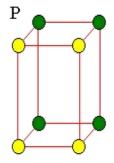

Material	Tc [K]	Crystal lattice
Lead (Pb)	7.196	FCC
Thorium (Th)	1.175	FCC
Aluminium (AI)	1.083	FCC
Iridium (Ir)	0.1325	FCC
Rhodium (Rh)	0.000325	FCC
Tantalum (Ta)	4.47	BCC
Molibdenum (Mo)	0.915	BCC
Tungsten (W)	0.0154	BCC

Superconductors of type 1 with different crystal lattice

$$Zn - T\kappa = 0.85$$

Lattice HEX


(HEX – hexagonal crystal lattice)

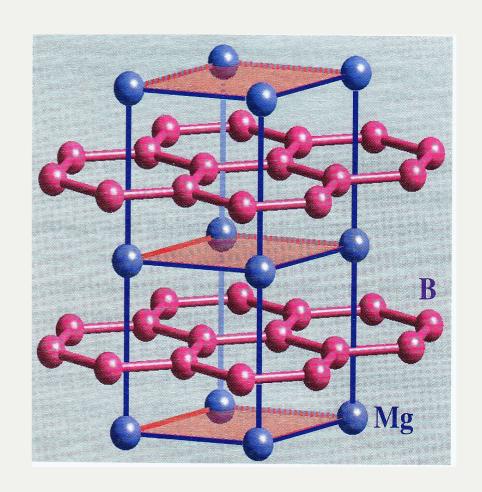

Material	Tc [K]	Crystal lattice
Lantanium (La)	4.88	HEX
Thallium (Ta)	2.38	HEX
Rhenium (Re)	1.697	HEX
Zinc (Zn)	0.85	HEX
Osmium (Os)	0.66	HEX
Zirconium (Zr)	0.61	HEX
Americium (Am)	0.60	HEX
Cadmium (Cd)	0.517	HEX
Ruthenium (Ru)	0.49	HEX
Titanium (Ti)	0.40	HEX
Hafnium (Hf)	0.128	HEX
Beryllium (Be)	0.023	HEX


(TET – tetragonal; ORC – orthorombic; RHL – rhombohedral crystal lattice)

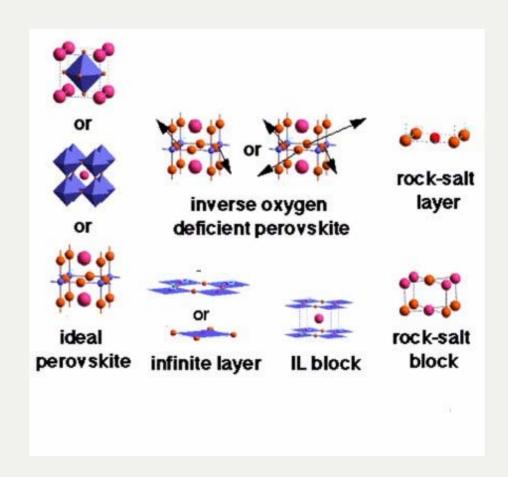
Material	Tc [K]	Crystal lattice
Tin (Sn)	3.72	TET
Indium (In)	3.41	TET
Protactinium (Pa)	1.40	TET
Gallium (Ga)	1.083	ORC
Uranium (U)	0.20	ORC
Mercury (Hg)	4.15	RHL

Superconductors of type 1 with different crystal lattice

Type 2 Superconductors

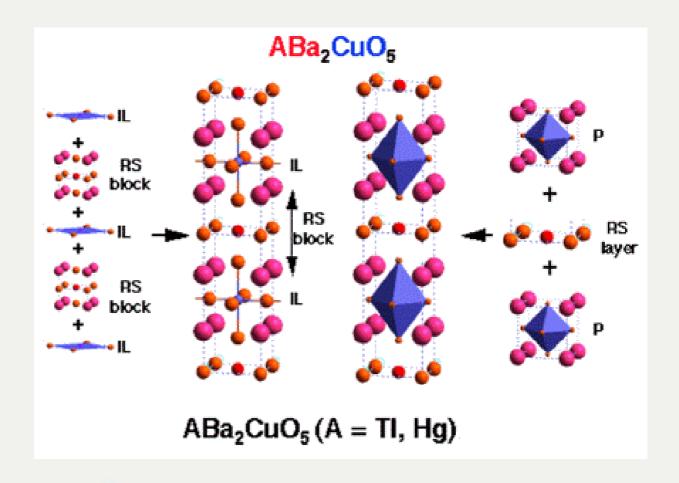

- Elements (V, Tc, Nb), compounds or alloys, copper perovskites, rare ferromagnetic superconductors, superconducting pyrochlore crystals
 known as the "hard"superconductors
- differ from Type 1 in that their transition from a normal to a superconducting state is gradual across a region of "mixed state" behaviour
- have two critical magnetic fields Bc1 and Bc2. Below Bc1 the superconductor excludes all magnetic field lines. At field strengths between Bc1 and Bc2 the field begins to intrude into the material. When this occurs the material is said to be in the mixed state, with some of the material in the normal state and part still superconducting. At Bc2 the superconductor stops superconducting.
- with high critical temperature, critical current and critical magnetic field
- extremely attractive to industry
- crystal lattice TET, ORTH
- the behaviour of these superconductors is not explain yet

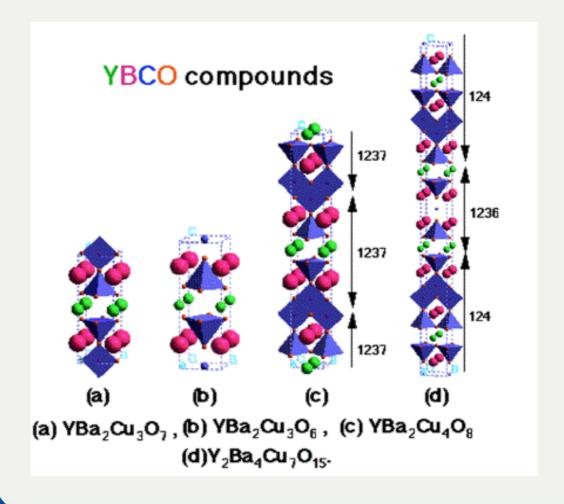
(Tc – critical temperature; Bc – critical magnetic field)


Material	Tc [K]	Bc [T]
Nb (metal)	9.5	0.2
Nb – Ti (alloy)	9.8	10.5
NbN (metalloid)	16.8	15.3
Nb3Sn (intermetalic)	18.3	24.5
Nb3Al	18.7	31.0
Nb3Ge	23.2	35.0
MgB2 (compound)	39	15
YBa2Cu3-xOx	93	150
Bi2Sr2Cax-1CuxO2x+4	130	108

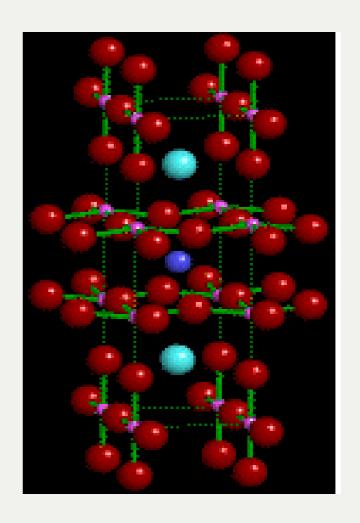
Superconductor MgB2

- MgB2 Tk = 39 K
 HEX crystal lattice
- Discovered 2001
 Akimitsu –Nagamatsu
- Upper critical field
 14 -39 T
- Lower critical field
 27 48 mT
- Low cost, light-weight and suitable for wires and thin films


Building blocks used to construct the structures of cuprate superconductors.

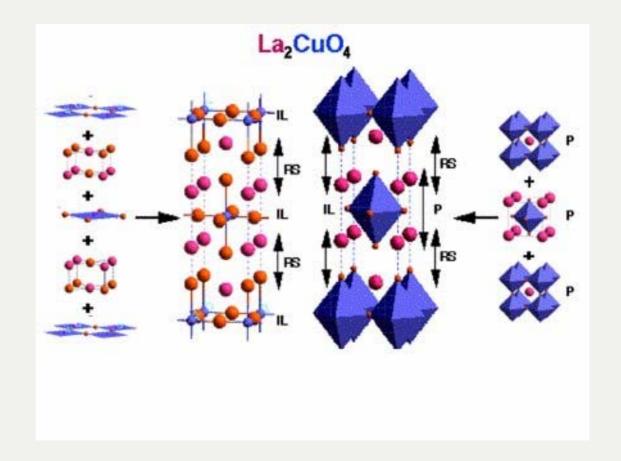

(Tc – critical temperature; TET – tetragonal crystal lattice)

Material	Tc [K]	Crystal lattice
Hg0.8TI0.2Ba2Ca2Cu3O8.33	138	TET
HgBa2Ca2Cu3O8	133 - 135	TET
HgBa2Ca3Cu4O10+	125 - 126	TET
HgBa2CuO4+	94 - 98	TET
Tl2Ba2Ca2Cu3O10	127- 128	TET
TI2Ba2CaCu2O6	138	TET
Tl2Ba2CuO	95	TET
NdBa2Cu3O7	96	TET
YBa2Cu3O7	92	TET


ABa2CuO5 compounds (Tκ ~ 100 K)

YBCO compounds (Tκ ~ 90 K)

YBa₂Cu₃O₇

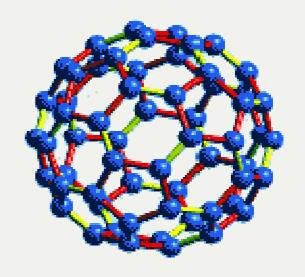


(Tc – critical temperature; ORTH - orthohedral crystal lattice)

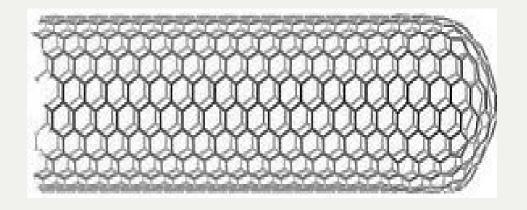
Material	Tc [K]	Crystal lattice
SnInBa4Tm3Cu5Ox	133	ORTH
SnInBa4Tm4Cu6Ox	88	ORTH
Sn4Ba4Y3Cu7Ox	80	ORTH
Bi2Sr2Ca2Cu3O10	130	ORTH
Bi2Sr2CaCu2O8	91 - 92	ORTH
Pb3Sr4Ca2Cu5O15	100 - 104	ORTH
AuBa2Ca3Cu4O13	99	ORTH
AuBa2Ca2Cu3O9	30	ORTH

Material	Tc [K]	Туре
La2Ba2CaCu5O9+	79	Copper perovskite
La2CaCu2O6+	45	Copper perovskite
SrNdCuO	40	Copper perovskite
MgB2	39	Binary alloy
Nb3Ge	23.2	Binary alloy
Nb	9.25	Elemental type
V	5.40	Elemental type
RuSr2(Cd,Eu,Sm)Cu2O8	58	Rare ferromagnetic
KOs2O6	9.6	Pyrochlore crystal

Structure of La2CuO4

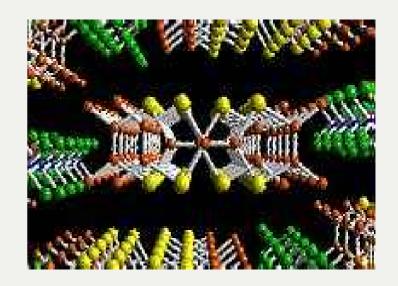

Atypical superconductors

- Fullerenes
- Organic superconductors
- Borocarbides
- Heavy Fermions
- Ruthenates
- Tungsten-bronze systems
- Fluoroargentates

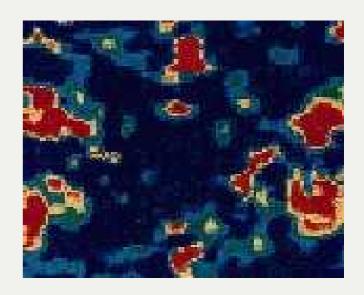

Fullerenes

The fullerene – also called a buckminsterfullerene or "buckyball" exists on a molecular level when 60 carbon atoms join in a closed sphere.

Na2Rb0.5Cs0.5C60 - Tc = 8 K Cs3C60 - Tc = 40 K K3C60 - Tc = 18 K C-60 doped with the interhalogen compound ICI -Tc = 60-70 K


Superconductor that conducts in single-walled carbon nanotubes at 15 K. This was discovered by Chinese researchers in 2001.

Organic superconductors

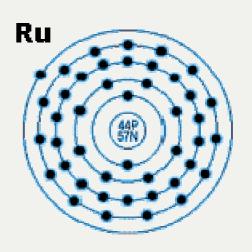

Organic superconductors are composed of an electron donor (the planar organic molecule) and an electron acceptor (a non-organic anion).

- (TMTSF)2PF6 (in figure)
- (BETS)2GaCI4
- (TMTSF)2CIO4

Heavy fermions compounds

- CeCoIn5 Tc = 2.3 K
- UPd2Al3 Tc = 2 K
- Pd2SnYb Tc = 1.79 K
- URu2Si2 Tc = 1.2 K
- UNi2AI3 Tc = 1 K
- Al3Yb Tc = 0.94 K
- UBe13 Tc = 0.87 K
- CePt3Si Tc = 0.75 K
- **UPt3 Tc** = **0.48 K** (in figure)

Ruthenates


- Sr2RuO4 Tc = 1.5 K
- SrRuO Tc = 1.5 K
- SrYRuO6 Tc = 1.5 K
- RuSr2(Gd,Eu,Sm)Cu2O8 Tc = 58 K

Tungsten-bronze system

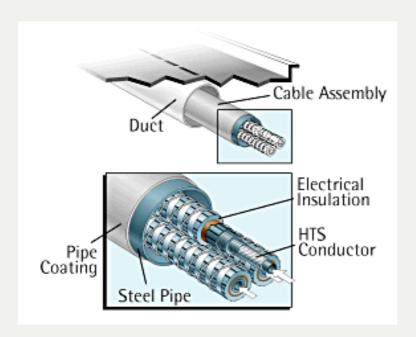
• Na0.05WO3 - Tc = 91 K

Fluoroargentates

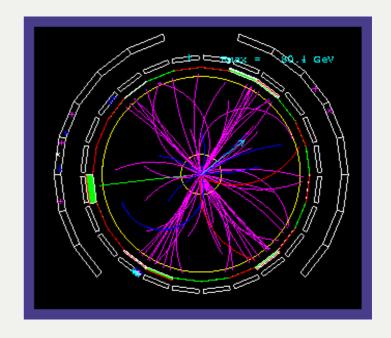
• Be-Ag-F Tc = 64 K

- Superconducting magnets
- Superconducting cables First HTS cable installation in a utility network is scheduled for the year 2000.
 - The first HTS coaxial HTS cable demonstration is scheduled for that same year.
 - The first commercial sales of HTS cable wires are expected shortly after 2001
- Superconducting wires

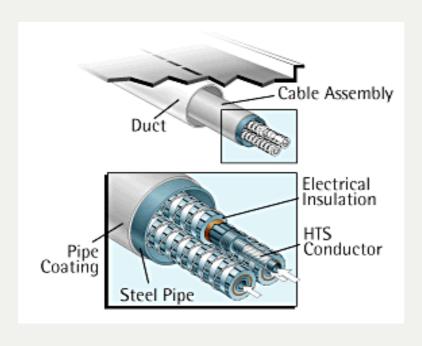
- Scanning SQUID microscope
- Devices that use the absence of resistance of superconductors
 - High current superconducting wires.
 - Radio Frequency filters in cell phone receivers
- Superconducting quantum devices
 - To define the Volt
 - "Quantum Metrology"
 - As magnetic field detectors


Magnetic levitation trains (MagLev) in Japan

Repulsive force from the induced current on a conducting guideway levitates the train.



High Currents in Tight Places


Transmission Line

Superconducting magnet

Applications of Superconductors - 5 Power Transmission

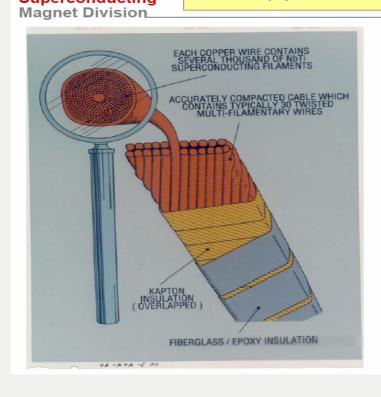
- First HTS cable installation in a utility network is scheduled for the year 2000.
- The first HTS coaxial HTS cable demonstration is scheduled for that same year.
- The first commercial sales of HTS cable wires are expected shortly after 2001.
- The warm dielectric cable
 configuration features a conductor
 made from HTS wires wound
 around a flexible hollow core.
 Liquid nitrogen flows through the
 core, cooling the HTS wire to the
 zero resistance state. The
 conductor is surrounded by
 conventional dielectric insulation.
 The efficiency of this design
 reduces losses.

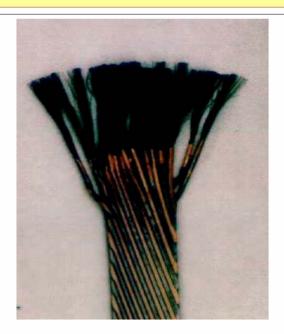
Superconducting magnet being built at University of Illinois

String of SC Magnets - 7

Relativistic Heavy Ion Collider RHIC), ~ 4 miles of SC magnets.

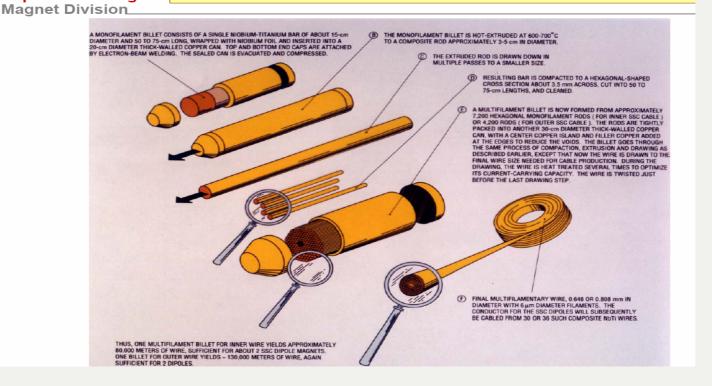
Brookhaven National Laboratory

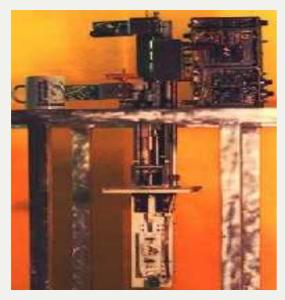


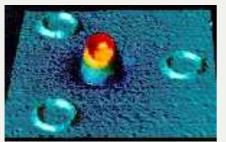

HTS power cables can carry two to ten times more power in equally or smaller sized cables

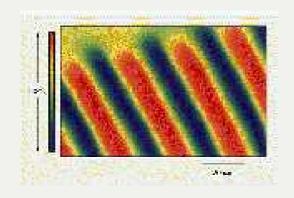
BROOKHAVEN
NATIONAL LABORATORY
Superconducting

A Typical Superconducting Cable




Filaments in an actual cable (Filament size in SSC/RHIC magnets: 6 micron)




Manufacturing of Nb-Ti Wires

Scanning SQUID microscope

A floppy disk as seen by a scanning SQUID microscope

Yttrium barium copper oxide

Other possible applications - 1

- Superconductor transformer
- Superconductor transistor
- Filters in Cell Phone Towers Superconducting Filter
- SQUIDs (Superconducting Quantum Interference Devices): The most sensitive detectors of magnetic fields
- Superconductors are used in cell phone receivers, magnets, and now in transmission cables.

Other possible applications - 2

- The quantum properties of superconductors are used to define a voltage standard, measure small magnetic fields, and in Quantum Metrology.
- Currently the Large Hadron Collider (LHC) is one of the most powerful colliders in the world. It consists of a 27 km tunnel and employs large superconducting magnets. The collider uses over 5,000 superconducting magnets. The magnets in the LHC must be capible of producing fields of 8 Tesla, 100 000 times the strength of the Earths magnetic field! The LHC is capible of accelerating large ions, such as lead, to energies in excess of 1250 TeV.

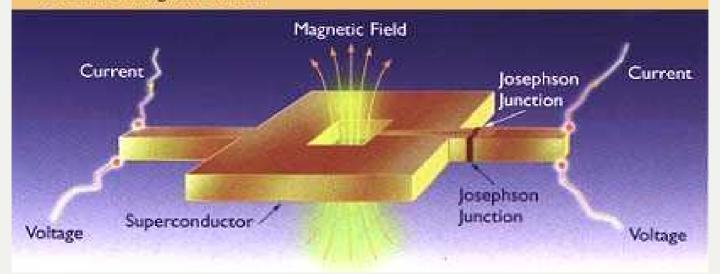
- 1. Magnetic rezonance tomography
- 2. Biomagnetic measurements
- SQUID magnetometer
- Magnetoencephalanography (MEG systems)
- Magnetocardiography (MCG device)
- Magnetoneurography
- Gastroenterology
- Magnetopneumography
- Liver iron suspectometry

Nuclear Magnetic Resonance Imaging

Superconducting magnets are used to generate stable (both in space and time) magnetic field

MRI device

 MRI scan of a human skull


 MRI of lower human spine (image used with permission

Superconducting Quantum Interference Device (SQUID)

A SQUID (Superconducting QUantum Interference Device) is the most sensitive type of detector known to science. Consisting of a superconducting loop with two Josephson junctions, SQUIDs are used to measure magnetic fields.

Superconductors in Medicine - 5 MEG systems

MEG systems consist of an array of low temperature SQUID sensors (37 to 255) in a dewar that surrounds the whole head

The medical MRI unit to the right projects a 0.1 Tesla homogeneous field 20cm above the top plate of the cryostat.

Conclusions

- Superconductivity is one of the most important phenomenon that must be studied from students of engineering specialities.
- The path from research experiments to commercial applications was made.
- It is difficult to predict the future applications but undoubtedly they will be extraordinary.